Authors: Thomas Bartsch Mónica Clapp Tobias Weth
Publish Date: 2007/01/10
Volume: 338, Issue: 1, Pages: 147-185
Abstract
We establish new lower bounds for the number of nodal bound states for the semiclassical nonlinear Schrödinger equation varepsilon2 Delta u+ axu=up2u with bounded and uniformly continuous potential a The solutions we obtain have precisely two nodal domains and their positive and negative parts concentrate near the set of minimum points of a Our approach is independent of penalization techniques and yields in some cases the existence of infinitely many nodal solutions for fixed varepsilon Via a dynamical systems approach we exhibit positively invariant sets of sign changing functions for the negative gradient flow of the associated energy functional We analyze these sets on the cohomology level with the help of Dold’s fixed point transfer In particular we estimate their cuplength in terms of the cuplength of equivariant configuration spaces of subsets of mathbbRN We also provide new estimates of the cuplength of configuration spacesAlbrecht Dold und Dieter Puppe gewidmet Diese im Jahr 2004 entstandene Arbeit war ursprünglich dem 50 Doktorjubiläum von Albrecht Dold und Dieter Puppe gewidmet Beide promovierten im Jahr 1954 an der Universität Heidelberg bei Herbert Seifert TB und MC verdanken ihnen sehr viel
Keywords: