**Authors: **K. Lechner,

**Publish Date**: 2010/12/14

**Volume:** 2010, **Issue:**12, **Pages:** 63-

## Abstract

We construct for the first time an energy-momentum tensor for the electromagnetic field of a p-brane in arbitrary dimensions, entailing finite energy-momentum integrals. The construction relies on distribution theory and is based on a Lorentz-invariant regularization, followed by the subtraction of divergent and finite counterterms supported on the brane. The resulting energy-momentum tensor turns out to be uniquely determined. We perform the construction explicitly for a generic flat brane. For a brane in arbitrary motion our approach provides a new paradigm for the derivation of the, otherwise divergent, self-force of the brane. The so derived self-force is automatically finite and guarantees, by construction, energy-momentum conservation.

**Keywords:**