Paper Search Console

Home Search Page About Contact

Journal Title

Title of Journal: Ukr Math J

Search In Journal Title:

Abbravation: Ukrainian Mathematical Journal

Search In Journal Abbravation:

Publisher

Springer US

Search In Publisher:

DOI

10.1002/smll.201370028

Search In DOI:

ISSN

1573-9376

Search In ISSN:
Search In Title Of Papers:

Generalizations of ⊕ supplemented modules

Authors: B N Türkmen A Pancar
Publish Date: 2013/11/01
Volume: 65, Issue: 4, Pages: 612-622
PDF Link

Abstract

We introduce ⊕ radical supplemented modules and strongly ⊕ radical supplemented modules briefly srs ⊕modules as proper generalizations of ⊕ supplemented modules We prove that 1 a semilocal ring R is left perfect if and only if every left Rmodule is an ⊕ radical supplemented module 2 a commutative ring R is an Artinian principal ideal ring if and only if every left Rmodule is an srs ⊕module 3 over a local Dedekind domain every ⊕ radical supplemented module is an srs ⊕module Moreover we completely determine the structure of these modules over local Dedekind domains


Keywords:

References


.
Search In Abstract Of Papers:
Other Papers In This Journal:


Search Result: