Authors: Nima Rabiei Jose J Muñoz
Publish Date: 2015/04/18
Volume: 62, Issue: 3, Pages: 761-786
Abstract
In this paper we present a method for decomposing a class of convex nonlinear programmes which are frequently encountered in engineering plastic analysis These problems have secondorder conic memberships constraints and a single complicating variable in the objective function The method is based on finding the distance between the feasible sets of the decomposed problems and updating the global optimal value according to the value of this distance The latter is found by exploiting the method of averaged alternating reflections which is here adapted to the optimisation problem at hand The method is specially suited for nonlinear problems and as our numerical results show its convergence is independent of the number of variables of each subdomain We have tested the method with an illustrative example and with problems that have more than 10000 variables
Keywords: