Authors: Faezeh Toutounian Nasser Akhoundi
Publish Date: 2012/06/09
Volume: 62, Issue: 3, Pages: 505-525
Abstract
In this paper we propose to solve the Toeplitz linear systems T n x = b by a recursivebased method The method is based on repeatedly dividing the original problem into two subproblems that involve the solution of systems containing the Schur complement of the leading principal submatrix of the previous level The idea is to solve the linear systems S m y = d where S m is the Schur complement of T 2m the principal submatrix of T n by using a self preconditioned iterative methods The preconditioners which are the approximate inverses of S m are constructed based on famous Gohberg–Semencul formula All occurring matrices are represented by proper generating vectors of their displacement rank characterization We show that for well conditioned problems the proposed method is efficient and robust For illconditioned problems by using some iterative refinement method the new method would be efficient and robust Numerical experiments are presented to show the effectiveness of our new method
Keywords: