Authors: JS Kim IH Sung YT Kim EY Kwon DE Kim Y H Jang
Publish Date: 2006/06/30
Volume: 22, Issue: 2, Pages: 143-149
Abstract
The information on the frictional resistance of a selfpropelled robotic capsule endoscope moving inside the body is very important for the design and the performance enhancement of such parameters of the capsule endoscope as power consumption motion control and positioning accuracy Based on this motivation the ultimate goal of this research was to develop an analytical model that can predict the frictional resistance of the capsule endoscope moving inside the living body In this work experimental investigations of the fundamental frictional characteristics and the viscoelastic behaviors of the small intestine were performed by using custombuilt testers and various capsule dummies The small intestine of a pig was used for the experiments Experimental results showed that the average frictional force was 10–50 mN and higher moving speed of the capsule dummy resulted in larger frictional resistance of the capsule In addition the friction coefficient did not change significantly with respect to the apparent area of contact between the capsule dummy and the intestine and also the friction coefficients decreased with an increase in the normal load and varied from 008 to 02 Such frictional behaviors could be explained by the lubrication characteristics of the intestine surface and typical viscoelastic characteristics of the small intestine material Also based on the experimental results a viscoelasticity model for the stress relaxation of the small intestine could be derived
Keywords: