Paper Search Console
Journal Title
Title of Journal: Int J Miner Metall Mater
Abbravation: International Journal of Minerals, Metallurgy, and Materials
Publisher
University of Science and Technology Beijing
DOI
10.1016/0197-2456(93)90142-z
ISSN
1869-103X
By employing a twodimensional transient thermomechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold we predicted the evolution of shell deformation and the thermal behaviors including the mold flux film dynamical distribution the air gap formation as well as the shell temperature field and the growth of carbon steel solidification in a 2120 mm × 266 mm slab continuous casting mold The results show that the shell server deformation occurs in the offcorners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm respectively from the corners of the wide and narrow faces of the shell under typical casting conditions As a result the hot spots which result from the thick mold flux film filling the shell/mold gap form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward