Authors: Thai Doan Chuong Do Sang Kim
Publish Date: 2015/03/26
Volume: 251, Issue: 1-2, Pages: 73-87
Abstract
This paper is devoted to the study of optimality conditions and duality in nondifferentiable minimax programming problems and applications Employing some advanced tools of variational analysis and generalized differentiation we establish new necessary conditions for optimal solutions of a minimax programming problem involving inequality and equality constraints Sufficient conditions for the existence of such solutions to the considered problem are also obtained by way of Linvexinfine functions We state a dual problem to the primal one and explore weak strong and converse duality relations between them In addition some of these results are applied to a nondifferentiable multiobjective optimization problemThis work was supported by the Basic Science Research Program through the National Research Foundation of Korea NRF funded by the Ministry of Education Science and Technology NRF2013R1A1A2A10008908 and by the Vietnam National Foundation for Science and Technology Development NAFOSTED No 10101201417
Keywords: