Journal Title
Title of Journal: Pure appl geophys
|
Abbravation: Pure and Applied Geophysics
|
Publisher
SP Birkhäuser Verlag Basel
|
|
|
|
Authors: Hideaki Yasuhara Derek Elsworth
Publish Date: 2008/07/31
Volume: 165, Issue: 7, Pages: 1289-1306
Abstract
Unusually rapid closure of stressed fractures observed in the initial stages of loading and at low temperatures is examined using models for subcritical crack growth and pressure solution The model for stress corrosion examines tensile stress concentrations induced at the Hertzian contact of propping fracture asperities and mediates fracture growth according to a kinetic rate law Conversely pressure solution is described by the ratelimiting process of dissolution resulting from the elevated stresses realized at the propping asperity contact Both models are capable of following the observed compaction of fractures in novaculite However closure rates predicted for stress corrosion cracking are orders of magnitudes faster than those predicted for pressure dissolution For consistent kinetic parameters predictions from stress corrosion better replicate experimental observations especially in the shortterm and at low temperature when mechanical effects are anticipated to dominate Rates and magnitudes of both stress corrosion and pressure solution are dependent on stresses exerted over propping asperities Rates of closure due to stress corrosion cracking are shown to be always higher than for pressure solution except where stress corrosion ceases as contact areas grow and local stresses drop below an activation threshold A simple rate law is apparent for the progress of fracture closure defined in terms of a constant and an exponent applied to the test duration For current experimental observations this rate law is shown to replicate early progress data and shows promise to define the evolution of transport properties of fractures over extended durations
Keywords:
.
|
Other Papers In This Journal:
|