Authors: A Ashok S C C Bailey M Hultmark A J Smits
Publish Date: 2012/09/27
Volume: 53, Issue: 6, Pages: 1713-1722
Abstract
We use gridgenerated turbulence as a benchmark flow to test the effects of spatial resolution on turbulence measurements with hot wires To quantify the spatial filtering measurements of the turbulence statistics and spectra downstream of the grid were made using hot wires of varying length and compared to the results from a new nanoscale thermal anemometry probe which has a sensing length of the order of or smaller than the Kolmogorov scale In order to separate the effects of temporal and spatial filtering a study was performed to ensure that the data were free of the artifacts of temporal filtering so that differences in the measurements could be wholly attributed to spatial filtering An empirical correlation for the attenuation of the streamwise Reynolds stress due to spatial filtering is constructed and it is shown that these grid turbulence results relate directly to the nearwall region of wallbounded flows where the effects of spatial filtering are most acutely felt The effect of spatial filtering on the streamwise spectrum function is observed to extend to almost all wavenumbers even those significantly lower than the length of the hot wire itself It is also shown that estimates of the Kolmogorov scale are affected by spatial filtering when wires longer than the Kolmogorov length are usedThis work was supported by ONR Grant N000140910263 Program Manager Ron Joslin and NSF Grant CBET1064257 Program Manager Henning Winter Margit Vallikivi provided the NSTAP probes and Mike Vocaturo and Glenn Northey generously gave their technical assistance
Keywords: