Journal Title
Title of Journal: Continuum Mech Thermodyn
|
Abbravation: Continuum Mechanics and Thermodynamics
|
Publisher
Springer Berlin Heidelberg
|
|
|
|
Authors: TT Bui QB Bui A Limam JC Morel
Publish Date: 2015/07/22
Volume: 28, Issue: 1-2, Pages: 523-538
Abstract
Rammed earth is attracting renewed interest throughout the world thanks to its “green” characteristics in the context of sustainable development Several research studies have thus recently been carried out to investigate this material Some of them attempted to simulate the rammed earth’s mechanical behavior by using analytical or numerical models Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers This hypothesis proved to be acceptable for the case of vertical loading but it could be questionable for horizontal loading To address this problem discrete element modeling seems to be relevant to simulate a rammed earth wall To our knowledge no research has been conducted thus far using discrete element modeling to study a rammed earth wall This paper presents an assessment of the discrete element modeling’s robustness for rammed earth walls Firstly a brief description of the discrete element modeling is presented Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr–Coulomb model with a tension cutoff and postpeak softening were given The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature The results showed that in the case of vertical loading interfaces did not have an important effect In the case of diagonal loading model with interfaces produced better results Interface characteristics can vary from 85 to 100 of the corresponding earthen layer’s characteristics
Keywords:
.
|
Other Papers In This Journal:
|