Authors: X Zhang H Gu M Fujii
Publish Date: 2006/05/09
Volume: 27, Issue: 2, Pages: 569-580
Abstract
This paper reports measurements of the effective thermal conductivity and thermal diffusivity of various nanofluids using the transient shorthotwire technique To remove the influences of the static charge and electrical conductance of the nanoparticles on measurement accuracy the shorthotwire probes are carefully coated with a pure Al2O3 thin film Using distilled water and toluene as standard liquids of known thermal conductivity and thermal diffusivity the length and radius of the hot wire and the thickness of the Al2O3 film are calibrated before and after application of the coating The electrical leakage of the shorthotwire probes is frequently checked and only those probes that are coated well are used for measurements In the present study the effective thermal conductivities and thermal diffusivities of Al2O3/water ZrO2/water TiO2/water and CuO/water nanofluids are measured and the effects of the volume fractions and thermal conductivities of nanoparticles and temperature are clarified The average diameters of Al2O3 ZrO2 TiO2 and CuO particles are 20 20 40 and 33 nm respectively The uncertainty of the present measurements is estimated to be within 1 for the thermal conductivity and 5 for the thermal diffusivity The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancement and can be predicted accurately by the model equation of Hamilton and Crosser when the spherical nanoparticles are dispersed into fluids
Keywords: