Authors: Guozheng Quan Tong Wang Le Zhang
Publish Date: 2016/06/25
Volume: 89, Issue: 1-4, Pages: 145-161
Abstract
In order to study the effect of austenitizing temperature and packing time on phase evolution more accurate a coupling element finite model of hot stamping process of BR1500HS is established based on the platform of DEFORM3D which takes the interaction of heat plastic work and phase transformation into consideration The simulated results reveal that the final microstructure mainly consists of martensite and the martensite volume fraction increases at an austenitizing temperature range from 800 to 900 °C and has a little change with the increasing packing time Subsequently a series of physical experiments are conducted to evaluate the reliability of the simulated results The micrographs show that influence of the austenitizing temperature and packing time on martensite volume fraction is consistent with the simulated results Further the tested hardness distribution also proved that the present thermalmechanical phase coupling element finite model is an effective tool to predict the microstructure during the hot stamping process
Keywords: