Paper Search Console

Home Search Page About Contact

Journal Title

Title of Journal: Hydrogeol J

Search In Journal Title:

Abbravation: Hydrogeology Journal

Search In Journal Abbravation:

Publisher

Springer Berlin Heidelberg

Search In Publisher:

DOI

10.1016/0007-0971(83)90085-2

Search In DOI:

ISSN

1435-0157

Search In ISSN:
Search In Title Of Papers:

Investigating the influence of aquifer heterogenei

Authors: Dylan J Irvine Heather A Sheldon Craig T Simmons Adrian D Werner Cedric M Griffiths
Publish Date: 2014/09/18
Volume: 23, Issue: 1, Pages: 161-173
PDF Link

Abstract

The potential for thermal convection in aquifers is strongly influenced by permeability Permeability is highly heterogeneous within aquifers and spatial distributions of permeability are rarely well constrained by measurements making it difficult to determine the potential for thermal convection in a given aquifer In this study this difficulty is overcome through the use of a stratigraphic forward model SFM The SFM simulates the processes of deposition burial and compaction of the aquifer yielding a geologically plausible permeability field that is conditioned through measured permeabilityporosity relationships The aim of this study is to determine the influence of aquifer heterogeneity on the potential for thermal convection in the Yarragadee Aquifer Western Australia Permeability distributions from the SFM of the Yarragadee Aquifer are analysed through calculation of the thermal Rayleigh number a stability criterion from vertically averaged permeability and numerical hydrothermal simulations with permeability distributions taken from the SFM Results from the numerical simulations demonstrate that thermal convection can occur with the inclusion of geologically informed heterogeneity These findings are supported by Rayleigh number calculations that indicate that convection is most likely to occur on the eastern side of the aquifer where it is thick and has high average permeabilityLe potentiel de convection thermique en aquifères est fortement influencé par la perméabilité La perméabilité est fortement hétérogène dans les aquifères et des distributions spatiales de la perméabilité sont rarement bien contraintes par les mesures rendant difficile de déterminer le potentiel de convection thermique dans un aquifère donné Dans cette étude cette difficulté est surmontée par l’utilisation d’un modèle stratigraphique direct Startigraphic Forward Model SFM Le SFM simule les processus de dépôt recouvrement et compaction de la formation aquifère aboutissant à un champ de perméabilité géologiquement plausible qui est contraint par des rapports de perméabilitéporosité mesurés Le but de cette étude est de déterminer l’influence de l’hétérogénéité de la couche aquifère sur le potentiel de convection thermique dans l’aquifère du Yarragadee en Australie occidentale Les distributions de perméabilité du SFM de l’aquifère du Yarragadee sont analysées à travers le calcul du nombre thermique de Rayleigh un critère de stabilité à partir de la perméabilité moyenne calculée sur la verticale et de simulations hydrothermales numériques avec des distributions de perméabilité prises du SFM Les résultats des simulations numériques démontrent que la convection thermique peut se produire avec l’inclusion d’une hétérogénéité d’origine géologique Ces résultats sont soutenus par les calculs du nombre de Rayleigh qui indiquent que la convection est plus susceptible de se produire du côté oriental de la couche aquifère où elle est épaisse et où la perméabilité moyenne est élevéeEl potencial para la convección térmica en los acuíferos está fuertemente influenciado por la permeabilidad La permeabilidad es altamente heterogénea dentro de los acuíferos y las distribuciones espaciales de permeabilidad están raramente bien determinadas por mediciones lo cual dificulta determinar el potencial para la convección térmico en un acuífero dado En este estudio esta dificultad es superada a través del uso de un modelo estratigráfico directo SFM El SFM simula los procesos de depositación enterramiento y compactación del acuífero brindando un campo de permeabilidad geológicamente verosímil que está condicionado a través de las medidas de las relaciones porosidad – permeabilidad El objetivo de este estudio es determinar la influencia de la heterogeneidad del acuífero sobre el potencial de convección térmica en el Acuífero Yarragadee Australia Occidental Las distribuciones de permeabilidad del SFM del Acuífero Yarragadee son analizadas a través del cálculo de número térmico de Rayleigh un criterio de estabilidad proviniendo de la permeabilidad verticalmente promediada y simulaciones numéricas hidrotermales con distribuciones de permeabilidad tomadas del SFM Los resultados de las simulaciones numéricas demuestran que la convección térmica puede ocurrir con la inclusión de la heterogeneidad geológicamente documentada Estos hallazgos están apoyado por el cálculo del número de Rayleigh que indican que la convección es más probable que ocurra en el lado este del acuífero donde es espeso y tiene una alta permeabilidad promedio摘要含水层中的热自由对流潜力受渗透率的强烈影响。含水层内的渗透率非常不均匀渗透率的空间分布很少和测量结果一致这使得确定某一特定含水层的热对流潜力非常困难。在这项研究中这个难题通过采用地层正演模型得到解决。地层正演模型模拟了含水层的沉积、埋藏和压实过程产生了一个地质上似乎可信的渗透率场这个渗透率场受到测量的渗透率孔隙率关系的制约。本项研究的目的就是确定含水层非均质性对西澳大利亚州Yarragadee含水层中热对流潜力的影响。通过计算垂直上平均渗透率的热瑞利数稳定性判据 和利用从地层正演模型得到的渗透率分布数据进行数值热液模拟对Yarragadee含水层地层正演模型进行了分析。数值模拟结果显示热对流可发生在地质上已知晓的非均质含水层中。这些发现得到了瑞利数计算结果的支持表明对流最可能出现在含水层的东侧那里含水层很厚具有高度平均的渗透率。O potencial de convecção térmica em aquíferos é fortemente influenciado pela permeabilidade A permeabilidade é altamente heterogénea no interior dos aquíferos e distribuições espaciais da permeabilidade raramente são bem definidas através de medições o que torna difícil determinar o potencial para a convecção térmica num determinado aquífero Neste estudo esta dificuldade é superada através da utilização de um modelo estratigráfico sequencial MES O MES simula os processos de deposição enterramento e compactação do aquífero produzindo um campo de permeabilidade geologicamente plausível que é condicionado através de relações permeabilidadeporosidade medidas O objetivo deste estudo é determinar a influência da heterogeneidade aquífera sobre o potencial de convecção térmica no Aquífero Yarragadee Austrália Ocidental Distribuições da permeabilidade obtidas a partir do MES do Aquífero Yarragadee são analisadas através do cálculo do número térmico de Rayleigh um critério de estabilidade a partir da permeabilidade vertical média e a partir de simulações numéricas hidrotermais com distribuições de permeabilidade retiradas do MES Os resultados das simulações numéricas demonstram que a convecção térmica pode ocorrer com a inclusão da heterogeneidade geológica fornecida Estes resultados são apoiados pelos cálculos do número de Rayleigh e indicam que a convecção é de ocorrência mais provável no lado oriental do aquífero onde este é mais espesso e tem permeabilidade média elevadaThis work was supported by 1 the Western Australian Geothermal Centre of Excellence WAGCOE a joint initiative between the Commonwealth Scientific and Industrial Research Organisation CSIRO the University of Western Australia and Curtin University and 2 the National Centre for Groundwater Research and Training NCGRT through the Australian Research Council and the National Water Commission We would like to thank Thomas Poulet and Luk Peeters who reviewed an early version of this manuscript as well as Joseph Hughes Robert Maliva Lynn Reid and one anonymous reviewer for their reviews which helped improve the paperMuch of the discussion in this paper is focused on permeability k m2 which is related to hydraulic conductivity K m s−1 by the expression K = kρg/μ where ρ and μ are fluid density and viscosity For hydrothermal simulations which include variable density and viscosity FEFLOW requires K to be entered at a reference temperature The BetaGamma plugin Magri 2009 allows the thermal expansion term to vary with temperature and requires that the reference temperature be set to 0 °C At 0 °C and 1 bar the reference density ρ 0 is 99984 kg/m3 and reference viscosity μ 0 is 0001792 Pa s Wagner et al 2000 Thus the multiplying factor from k to K is ρ 0 g/μ 0 = 5474907 m−1 s−1


Keywords:

References


.
Search In Abstract Of Papers:
Other Papers In This Journal:

  1. Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer
  2. Modelling groundwater flow of the Trifa aquifer, Morocco
  3. Competition between topography- and compaction-driven flow in a confined aquifer: Some analytical results
  4. Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA
  5. Radiocarbon dating and the 36 Cl/Cl evolution of three Great Artesian Basin wells at Dalhousie, South Australia
  6. Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study
  7. Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect
  8. Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water–groundwater interactions
  9. Determination of hydraulic parameters of an unconfined alluvial aquifer by the floodwave-response technique
  10. A theoretical analysis of basin-scale groundwater temperature distribution
  11. Numerical modeling of stress-permeability coupling in rough fractures
  12. Using Hydrogeochemical Methods To Evaluate Complex Quaternary Subsurface Stratigraphy Block Island, Rhode Island, USA
  13. Karst groundwater: a challenge for new resources
  14. Evaluation of retention properties of a semi-synthetic fractured block from modelling at performance assessment time scales (Äspö Hard Rock Laboratory, Sweden)
  15. Groundwater management by riverbank filtration and an infiltration channel: the case of Obrenovac, Serbia
  16. Interactions between groundwater and surface water: the state of the science
  17. A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania
  18. Groundwater recharge: an overview of processes and challenges
  19. Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along river–groundwater exchange zones in a subtropical stream
  20. Is self-regulation a myth? Case study on Spanish groundwater user associations and the role of higher-level authorities
  21. Reply to comment on “Geochemical heterogeneity and isotope geochemistry of natural attenuation processes in a gasoline-contaminated aquifer at the Hnevice site, Czech Republic”: report published in Hydrogeology Journal (2007) 15: 961-976, by Barbora Topinkova, Kamil Nesetril, Josef Datel, Ondrej Nol, Petr Hosl
  22. Automatic estimation of aquifer parameters using long-term water supply pumping and injection records
  23. Book review: Groundwater around the World: A Geographic Synopsis, by Jean Margat and Jac van der Gun (CRC Press, 2013)
  24. Effect of sorption intensities on dispersivity and macro-dispersion coefficient in a single fracture with matrix diffusion
  25. The bailer test: a simple effective pumping test for assessing borehole success
  26. Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis
  27. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data
  28. Groundwater source assessment program for the state of Hawaii, USA: methodology and example application
  29. Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Germany) and numerical simulation
  30. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico
  31. The role of faulting on surface deformation patterns from pumping-induced groundwater flow (Las Vegas Valley, USA)
  32. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system
  33. Effect of advective mass transfer on field scale fluid and solute movement: Field and modeling studies at a waste disposal site in fractured rock at Oak Ridge National Laboratory, Tennessee, USA
  34. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh
  35. Characterization of a Pleistocene thermal spring in Mozambique
  36. Ground truthing groundwater-recharge estimates derived from remotely sensed evapotranspiration: a case in South Australia
  37. Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai, Egypt
  38. MODFLOW procedure to simulate axisymmetric flow in radially heterogeneous and layered aquifer systems
  39. Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate
  40. Effects of climate change on groundwater resources at Shelter Island, New York State, USA
  41. Simulated impacts of artificial groundwater recharge and discharge on the source area and source volume of an Atlantic Coastal Plain stream, Delaware, USA
  42. Investigating pesticide transport in the León-Chinandega aquifer, Nicaragua
  43. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
  44. A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland)

Search Result: