Authors: V G Ableev A Adamo M Agnello F Balestra G Belli G Bendiscioli A Bertin P Boccaccio G C Bonazzola T Bressani M Bruschi M P Bussa L Busso D Calvo M Capponi B Cereda P Cerello C Cicalo M Corradini S Costa S De Castro O Yu Denisov F D’Isep A Donzella L Fava A Feliciello L Ferrero A Filippi V Filippini D Galli R Garfagnini U Gastaldi B Giacobbe P Gianotti A Grasso C Guaraldo F Iazzi A Lai A Lanaro E Lodi Rizzini M Lombardi V Lucherini A Maggiora S Marcello U Marconi G V Margagliotti G Maron A Masoni I Massa B Minetti P Montagna M Morando L Musa F Nichitiu D Panzieri G Pauli M Piccinini G Piragino M Poli S N Prakhov G Puddu R A Ricci C Rizzo E Rossetto A Rotondi A M Rozhdestvensky P Salvini L Santi M G Sapozhnikov N Semprini Cesari S Serci R Spighi P Temnikov S Tessaro F Tosello V I Tretyak G L Usai L Vannucci S Vecchi G Vedovato L Venturelli M Villa A Vitale E Zavattini A Zenoni A Zoccoli G Zosi The OBELIX Collaboration
Publish Date: 2008/01/02
Volume: 107, Issue: 8, Pages: 1325-1337
Abstract
The effect of contaminants H2 N2 Ne Ar Xe on the time distribution of delayed annihilations average delay time about 3 μs of antiprotons stopped in helium gas at 3 atm and room temperature has been experimentally investigated The annihilation rate is expressed in terms of an empirical «quenching crosssection»bar sigma that is different for the different contaminants For hydrogen and xenon at low concentrationsbar sigma is around 35·10−16 cm2 and is more than ten times larger than for the other contaminants It has been observed that the addition of a contaminant with the exception of neon gives also rise to a delayed annihilation’s component that decays with an average time of some hundreds of nanoseconds It seems that this fast component increases and its average time decreases as the contaminant concentration increases
Keywords: