Authors: GuoHua Chen
Publish Date: 2007/05/10
Volume: 42, Issue: 17, Pages: 7239-7244
Abstract
The effects of replacement of MgO by CaO on the sintering and crystallization behavior of MgO–Al2O3–SiO2 system glassceramics were investigated The results show that with increasing CaO content the glass transition temperature firstly increased and then decreased the melting temperature was lowered and the crystallization temperature of the glassceramics shifted clearly towards higher temperatures With the replacement of MgO by less than 3 wt CaO the predominant crystalline phase in the glassceramics fired at 900 °C was found to be αcordierite and the secondary crystalline phase to be μcordierite When the replacement was increased to 10 wt the predominant crystalline phase was found to be anorthite and the secondary phase to be αcordierite Both thermal expansion coefficient TCE and dielectric constant of samples increases with the replacement of MgO by CaO The dielectric loss of sample with 5 wt CaO fired at 900 °C has the lowest value of 008 Only the sample containing 5 wt and10 wt CaO abbreviated as sample C5 and C10 can be fully sintered before 900 °C Therefore a dense and low dielectric loss glassceramic with predominant crystal phase of αcordierite and some amount of anorthite was achieved by using fine glass powders D50 = 3 μm fired at 875–900 °C The assintered density approaches 98 theoretical density The flexural strength of sample C5 firstly increases and then decreases with sintering temperature which closely corresponds to its relative density The TCE of sample C5 increases with increasing temperature The dielectric property of sample C5 sintered at different temperatures depends on not only its relative density but also its crystalline phases The dense and crystallized glassceramic C5 exhibits a low sintering temperature ≤900 °C a fairly low dielectric constant 52–53 a low dielectric loss ≤10−3 at 1 MHz a low TCE 40–425 × 10−6 K−1 very close to that of Si ∼35 × 10−6 K−1 and a higher flexural strength ≥134 MPa suggesting that it would be a promising material in the electronic packaging field
Keywords: